Problem 64

Estimate the mass of a virus.

Solution

From page 10,

$$
\begin{aligned}
10^{-15} \mathrm{~m} & =\text { diameter of proton } \\
10^{-7} \mathrm{~m} & =\text { diameter of typical virus } .
\end{aligned}
$$

Use these facts to find how many protons are in a typical virus.

$$
\# \text { of protons }=\frac{\text { diameter of typical virus }}{\text { diameter of proton }}=\frac{10^{-7} \mathrm{~m}}{10^{-15} \mathrm{~m}}=10^{8}
$$

Assuming the virus is made up completely of carbon atoms, which have 6 protons each, the mass is

$$
10^{8} \text { protons } \times \frac{1 \text { C atom }}{6 \text { protols }} \times \frac{12.01 \mathrm{am}}{1 \text { C atom }} \times \frac{1.66 \times 10^{-27} \mathrm{~kg}}{1 \text { am }} \approx 3 \times 10^{-19} \mathrm{~kg} .
$$

The fact that a carbon atom has 12.01 atomic mass units is found in the periodic table, and the fact that 1 atomic mass unit $=1.66 \times 10^{-27} \mathrm{~kg}$ is in Appendix C on page 891 .

